If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=375
We move all terms to the left:
x^2+2x-(375)=0
a = 1; b = 2; c = -375;
Δ = b2-4ac
Δ = 22-4·1·(-375)
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{94}}{2*1}=\frac{-2-4\sqrt{94}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{94}}{2*1}=\frac{-2+4\sqrt{94}}{2} $
| 5(-2+6x)=-190 | | 83+(2+3x)=180 | | 12(d)-7=41 | | -2(y+7)=5(2y-1) | | (1/64)^(0.5x-3)=8^(9x-2) | | 8(2v–1)=56 | | x^2+4x=306 | | 4x+1317-3x+1815=x | | -5(d-82)=5 | | 83+(2+3x)=90 | | 8/46=12/x | | –8v+5=–9v | | x+(x-3)=180 | | 85+3x=180 | | 5k=6+7k | | -9=-2x- | | 9x-4+4x=139 | | 6(q-69)=96 | | -40+2n=4n-8n(n+8) | | ++96=x+96 | | 24-3j=12 | | 8x+6x=8x+4x=12x | | X+2x-17=360 | | 7(x+5)-1=2(x-3)+x | | x+(-66)=180 | | 26=7b+12 | | ((1)/(64))^(0.5x-3)=8^(9x-2) | | 10x+11x+105=180 | | X+3x+x+10=180 | | 3m-6=10+m | | 8x+6=-6+2x+24 | | 3/4x-14=-2 |